Facebook Twitter Pinterest linkedin Telegram
Preferred high edu-tech solution providers to the Nordic region
DevinSense We Kickstart our customers ability to create value in EDUCATION, RESEARCH and DEVELOPMENT
Login / Register
Wishlist
0 Compare
0 items / €0,00
Menu
DevinSense We Kickstart our customers ability to create value in EDUCATION, RESEARCH and DEVELOPMENT
0 items / €0,00
  • Home
  • Products
    • Engineering Experiments TecQuipment
    • Quanser Prod Category
    • Quanser Lab Solutions
    • Quanser Digital Experiences
    • Motion Capture
    • Kinova Robot
    • MANUS
    • Geomagic Software (CAD)
    • Medical Simulators
  • Quote requests
    • Quanser
    • OptiTrack
    • TecQuipment
    • Haptics
  • NEWS
  • Job Offers
  • ABOUT US
    • Our Company
    • Our Partners
    • Questions & Answers
    • DevinSense Legals
  • Events
Call us: +46 76 2099221
Email: info@DevinSense.com
New
Click to enlarge
HomeQuanser Digital ExperiencesQuanser Interactive Labs QLabs Virtual Rotary Servo
Previous product
QLabs Virtual Coupled Tanks
Back to products
Next product
Quanser AERO myRIO
Quanser

QLabs Virtual Rotary Servo

Same as the physical Rotary Servo Base Unit, the virtual system features a DC motor that drives a smaller pinion gear. This gear is fixed to a larger middle gear that rotates on the load shaft. The position of the load shaft is measured using a high-resolution optical encoder or a potentiometer.

Brand

Quanser

Compare
Add to wishlist
  • Description
Description

“QLabs Virtual Rotary Servo is a fully instrumented, dynamically accurate digital twin of a classic Rotary Servo Base Unit system. It behaves in the same way as the physical hardware and can be measured and controlled using MATLAB®/Simulink® and other development environments. With QLabs Virtual Rotary Servo, you can enrich your lectures and activities in traditional labs, or bring credible, authentic model-based lab experiences into your distance and online control systems course.

QLabs Virtual Rotary Servo is available as a 12-month, multi-seat subscription. The platform is compatible with the physical Rotary Servo Base Unit curriculum, which covers modelling, position, and speed control topics.

”

Categories: Control Systems, Quanser Interactive Labs
Share
Facebook Twitter Pinterest linkedin Telegram

Related products

Compare
Close

2 DOF Ball Balancer

The 2 DOF Ball Balancer module consists of a plate on which a ball can be placed and is free to move. Two Rotary Servo Base Units are connected to the sides of the plate using 2 DOF gimbals. The plate can swivel about in any direction. By controlling the position of the servo load gears, the tilt angle of the plate can be adjusted to balance the ball to a desired planar position. The digital camera mounted overhead captures two-dimensional images of the plate and track coordinates of the ball in real time. Images are transferred quickly to the PC via a FireWire connection. Students can make the ball track various trajectories (a circle, for example), or even stabilize the ball when it is thrown onto the plate using the controller provided with the experiment.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

Linear Flexible Joint

The Linear Flexible Joint experiment will help your students learn how to model and control real-world dynamic systems such as flexible couplings and gearboxes.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

Magnetic Levitation

The force between electromagnet and ball is highly nonlinear. Further, the electromagnet itself has its own dynamics that must be compensated for. The challenging dynamics of the system make it perfect for teaching modeling, linearization, current control, position control, and using multiple loops (i.e. cascade control). It could also be used to test and implement more advanced control strategies, such as multi-variable, gain scheduling, and nonlinear control.
Add to wishlist
Read more
Quote
Quick view
New
Compare
Close

QLabs Virtual Coupled Tanks

Same as the physical Coupled Tanks, the virtual system features a single pump and two tanks. Each tank is instrumented with a pressure sensor to measure the liquid level. The different outflow valves configurations allow to direct the flow of the liquid, while the flow rate can be changed by using outflow orifices of different diameters.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

Quanser AERO myRIO

The experiment is reconfigurable for various aerospace systems, from 1 DOF and 2 DOF helicopter to half-quadrotor. Integrating Quanser-developed QFLEX 2 computing interface technology, the Quanser AERO also offers flexibility in lab configurations, using a PC, or microcontrollers, such as NI myRIO, Arduino and Raspberry Pi. With the comprehensive course materials included, you can build a state-of-the-art teaching lab for your mechatronics or control courses, engage students in various design and capstone projects, and validate your research concepts on a high-quality, robust, and precise platform.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

2 DOF Robot

The 2 DOF Robot module is connected to two Rotary Servo Base Units, which are mounted at a fixed distance. Two servomotors on the Rotary Servo Base Units are mounted at a fixed distance and control a 4-bar linkage system: two powered arms coupled through two non-powered arms. The system is planar and has two actuated and three unactuated revolute joints. The goal of the 2 DOF Robot experiment is to manipulate the X-Y position of a four-bar linkage end effector. Such a system is similar to the kinematic problems encountered in the control of other parallel mechanisms that have singularities.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

Rotary Double Inverted Pendulum

The Double Inverted Pendulum module is composed of a rotary arm that attaches to the Rotary Servo Base Unit, a short 7-inch bottom blue rod, an encoder hinge, and the top 12-inch blue rod. The balance control computes a voltage based on the angle measurements from the encoders. This control voltage signal is amplified and applied to the Servo motor. The rotary arm moves accordingly to balance the two links and the process repeats itself.
Add to wishlist
Read more
Quote
Quick view
Compare
Close

Linear Servo Base Unit with Inverted Pendulum

The Linear Motion Control Lab is one of the most popular, flexible and modular solutions for teaching controls. Based on the world’s leading turn-key platform for controls education, it is designed to help engineering educators reach a new level of efficiency and effectiveness in teaching controls.
Add to wishlist
Read more
Quote
Quick view
TecQuipment
Quanser
OptiTrack
MANUS
IntelligentUltraSound
3DSystems
DevinSense_logga

The preferred EduTech, solution provider to technical universities and hospitals in the Nordic.

Veddestavägen 19, Järfälla, Sweden
Phone: (+46) 762099221
info@devinsense.com
Facebook Twitter Instagram YouTube Pinterest

PARTNERS

  • QUANSER
  • TECQUIPMENT
  • OPTITRACK
  • HAPTICS

HI, HOW CAN WE HELP?

Call me:
+46 (0)76 2099221

wood-gallery-placeholder-5

Join Our Newsletter Now

Be the First to Know. Sign up to newsletter today

DevinSense AB Created by DevinSense AB
payments

Shopping cart

close
  • Home
  • Products
    • Engineering Experiments TecQuipment
    • Quanser Prod Category
    • Quanser Lab Solutions
    • Quanser Digital Experiences
    • Motion Capture
    • Kinova Robot
    • MANUS
    • Geomagic Software (CAD)
    • Medical Simulators
  • Quote requests
    • Quanser
    • OptiTrack
    • TecQuipment
    • Haptics
  • NEWS
  • Job Offers
  • ABOUT US
    • Our Company
    • Our Partners
    • Questions & Answers
    • DevinSense Legals
  • Events
  • Wishlist
  • Compare
  • Login / Register

Sign in

close

Lost your password?
No account yet? Create an Account
Scroll To Top
We use cookies to improve your experience on our website. By browsing this website, you agree to our use of cookies.
Accept