The Rotary Servo Base Unit is the fundamental element of the Quanser Rotary Control experiments. It is ideally suited to introduce basic control concepts and theories on an easy-to-use and intuitive platform. Use it on its own to perform several experiments, or expand the scope of this unit by adding on other modules to teach an even wider range of control concepts. Instructors can thus expose students to a variety of rotary control challenges for a minimal investment. Real-world applications of the rotary servomotor include the autofocus feature in modern cameras, cruise control in automobiles, and speed control in CD players.
Rotary Servo Base Unit
The Rotary Servo Base Unit is a geared servo-mechanism system. The plant consists of a DC motor in a solid aluminum frame. This DC motor drives the smaller pinion gear through an internal gear box. The pinion gear is fixed to a larger middle gear that rotates on the load shaft. The position of the load shaft can be measured using a high resolution optical encoder or a potentiometer. The encoder is also used to estimate the speed of the motor.
Brand | Quanser |
---|
Categories: Control Systems, Mechanical Engineering, Rotary Motion Platform
Related products
Quanser AERO Embedded
The experiment is reconfigurable for various aerospace systems, from 1 DOF and 2 DOF helicopter to half-quadrotor. Integrating Quanser-developed QFLEX 2 computing interface technology, the Quanser AERO also offers flexibility in lab configurations, using a PC, or microcontrollers, such as NI myRIO, Arduino and Raspberry Pi. With the comprehensive course materials included, you can build a state-of-the-art teaching lab for your mechatronics or control courses, engage students in various design and capstone projects, and validate your research concepts on a high-quality, robust, and precise platform.
Quanser AERO USB
The experiment is reconfigurable for various aerospace systems, from 1 DOF and 2 DOF helicopter to half-quadrotor. Integrating Quanser-developed QFLEX 2 computing interface technology, the Quanser AERO also offers flexibility in lab configurations, using a PC, or microcontrollers, such as NI myRIO, Arduino and Raspberry Pi. With the comprehensive course materials included, you can build a state-of-the-art teaching lab for your mechatronics or control courses, engage students in various design and capstone projects, and validate your research concepts on a high-quality, robust, and precise platform.
QLabs Robotics
QLabs Robotics is a collection of virtual laboratory activities that supplement traditional or online robotics courses. The virtual hardware labs are based on Quanser QArm robotic manipulator and QBot 2e mobile ground robot. The virtual twins of these robots are fully instrumented and dynamically accurate, allowing users to measure simulated sensors, including video and depth data, interact with virtual environments, and work with the same code created for the "real" robots. With QLabs Robotics, you can combine physical and virtual plants to enrich your lectures and in-lab activities and increases engagement and students’ learning outcomes in class-based or online courses.
2 DOF Gantry
The 2 DOF Inverted Pendulum/Gantry module is ideal to introduce more advanced principles of robotics. You can use it to
QLabs Virtual QBot 2e
Same as the physical QBot 2e, the virtual system is an autonomous ground robot featuring built-in sensors and vision system.
2 DOF Robot
The 2 DOF Robot module is connected to two Rotary Servo Base Units, which are mounted at a fixed distance. Two servomotors on the Rotary Servo Base Units are mounted at a fixed distance and control a 4-bar linkage system: two powered arms coupled through two non-powered arms. The system is planar and has two actuated and three unactuated revolute joints.
The goal of the 2 DOF Robot experiment is to manipulate the X-Y position of a four-bar linkage end effector. Such a system is similar to the kinematic problems encountered in the control of other parallel mechanisms that have singularities.
QLabs Virtual QArm
Same as the physical QArm, the virtual system is a 4 DOF serial robotic manipulator with a tendon-based two-stage gripper and an RGBD camera.
QLabs Virtual QUBE-Servo 2
Same as the physical QUBE-Servo 2, the virtual system features a DC motor with the inertia disk and inverted pendulum modules. Rotary encoders measure the angular position of the DC motor and pendulum. The motor angular velocity is measured through a software-based tachometer.